In-Situ Propellant Architecture for Near-Term Lunar Missions

Connor Geiman,[†] Daniel Faber, James Bultitude, Zachary Burkhardt, and Aiden O'Leary [†]Engineering Intern

Off-planet manufacture of propellants is critical to the sustainability of space exploration. But no minimum viable product for in-situ propellant production exists for a location such as the Moon. This is primarily due to the lack of storability for typical in-situ derived propellants such as hydrolox, the cryogenic bipropellant of liquid oxygen and hydrogen. Other cryogenic fuels that have additional elements, such as methane, are difficult to create in-situ due to resource limitations. Most storable alternatives to cryogenic propellant are toxic and also require hard-to-find elements in-situ.

Orbit Fab has undertaken a propulsion system trade study, summarized in Table 1. One nontoxic, storable monopropellant stands out for near-term in-situ resource utilization (ISRU): high-test peroxide (HTP), which can be made directly from water. HTP catalytically decomposes into oxygen and water vapor and can provide high-density specific impulse to power a lunar or small body ascent vehicle.

Table 1: In-situ propulsion system trade study shows the advantages of HTP monopropellant

Characteristic	Solar Electric	Direct Solar Thermal	Chemical	Water Solar Thermal	Cryo ISRU	Hvdrocarbon	Monoprop HTP ISRU
Complexity	low	med	low	med-high	high	med- high	low-med
Ascent Thrust	no	no	yes	no	yes	yes	yes
Solar Array / Collecting Area	high	high	low	high	high	medium	medium
ISRU	no	yes	no	yes	yes	yes	yes
Storable	yes	yes	yes	yes	no	yes	yes

Orbit Fab is developing a system that radically simplifies the production of hydrogen peroxide while increasing its availability both on and off Earth. A diagram of this system, currently at TRL 3, is shown in Figure 1. Peroxide is continuously produced from purified water using a proton exchange membrane (PEM) cell (Figure 2) developed by the Wang Group at Rice University and licensed to Orbit Fab.¹ The peroxide is concentrated to 90–98% HTP and stored. This HTP production system could enable in-situ HTP use within a few years. An MVP development timeline is presented in Figure 3 that will raise the system to TRL 6. Past work by John S. Lewis analyzed storable propellant feasibilitv for in-situ utilization.² which will catalyze Orbit Fab's efforts to further increase the TRL for spaceflight. Figure 4 shows a potential lunar ISRU sample return mission demonstrating the capability of Orbit Fab's HTP production system. A 250 kg dry mass (m_{dry}) lunar ascent vehicle returning from the lunar surface to low-Earth orbit rendezvous requires 1359 kg of HTP monopropellant, assuming specific impulse (I_{m}) of 150 s and Δv of 2.74 km/s. This is calculated using the ideal rocket equation (Equation 1), where m_{war} is fueled vehicle mass and g_{a} is standard gravity.

 $\Delta v = I_{sn}g_0 ln(m_{wet}/m_{dn})$

(1)

The HTP used for this mission's lunar ascent and return to LEO can be made on the lunar surface from water using the Orbit Fab system.

Figure 2: Orbit Fab is building upon Rice University Wang Group's patented peroxide PEM cell

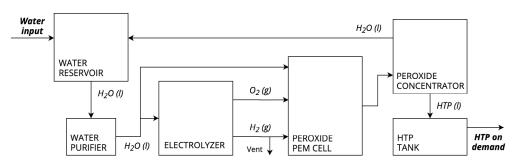


Figure 1: Notional block diagram highlighting major subsystems of water-to-HTP system

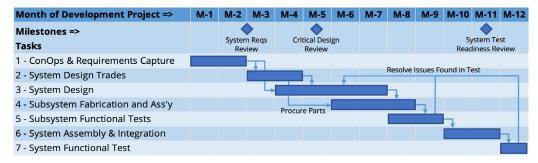


Figure 3: Milestone schedule from requirements capture to TRL 6 HTP production system MVP in a 12-month development period

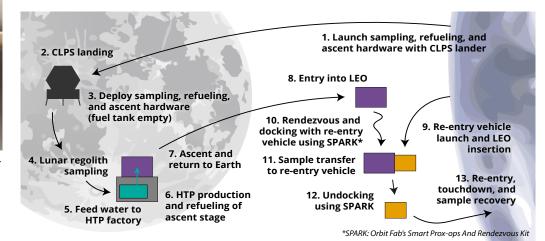


Figure 4: Potential lunar mission with sample return and HTP production system-enabled ascent vehicle refueling could be ready to fly as early as 2023

References

¹ Xia, Chuan, et al. "Direct Electrosynthesis of Pure Aqueous H2O2 Solutions up to 20% by Weight Using a Solid Electrolyte." Science, vol. 366, no. 6462, Oct. 2019, pp. 226-31

² Lewis, John S. "In-Space Production of Storable Propellants." 1 Mar. 2016.